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Executive Summary 
The biomedical research program of HANAMI consists of three project areas: (i) 

Advancing the state-of-the-art in Exascale-target molecular modelling through new 

algorithms for electrostatic interactions and AI/machine learning approaches to 

particle interactions, with the goal of simulating cellular-size systems; (ii) Better-

scaling algorithms and pipelines for processing genomic information from real and 

synthetic data and their application in creating digital twins of tumour evolution 

through multiscale cellular simulations; (iii) method development and applications 

of fluid dynamics both inside the body (e.g. nasal cavities, used for surgical 

planning) and outside, e.g. in terms of air flows. All three pillars involve joint code 

development and research activities with RIKEN-CCS groups and associated 

Japanese teams, implementations target both Supercomputer Fugaku and EuroHPC 

leadership resources, and new algorithms will be made available as open-source 

software in major codes. 

All collaborations have already started their active phase, there is dedicated staff 

recruited to the EU-based teams, joint planning meetings have been held with the 

RIKEN-based teams, and there are project meetings every few weeks between the 
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active-involvement researchers in each project, as well as plans for each code to 

target at least one major EuroHPC resource as well as Supercomputer Fugaku. 
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1 Introduction 
The biomedical projects in HANAMI have been set up to target areas of strong 

excellence in software as well as scientific applications where we have identified 

 Considerable overlap between the application scientific interests with the 

Japanese research ecosystem, 

 Existing software codes/projects with strong scientific impact that can be 

evaluated in terms of e.g. usage citations, 

 Interest in cross-cutting usage of software, i.e. value from running European 

codes in Japanese resources and vice versa, 

 Key technological software development that can have substantial impact 

on scaling and performance with 24-36 months of effort, and 

 Important scientific advances that can be realized once the improvements 

are implemented.  

The first major initiative of the work package is centred on biomolecular modelling 

and simulations, where there is a strong history of collaborations in particular 

between the GROMACS teams and RIKEN – GROMACS was the first major MD 

code to be accelerated for the K Computer1, and for Supercomputer Fugaku RIKEN 

early contributed the SVE acceleration that is now being expanded to EuroHPC 

supercomputers using e.g. modern Nvidia Arm-based CPUs.  

For HANAMI, the work is specifically focused on extreme scaling of single 

simulations by breaking the impasse previously created by the reliance on 3D FFTs, 

and by implementing this as a library with both CPU and GPU support, we expect 

that both GROMACS and the RIKEN-developed GENESIS code (Kobayashi et al., 

2017) will benefit significantly – in particular since future RIKEN supercomputers 

are likely to include GPU-based accelerators.  

The biomolecular efforts will also use these advances to model whole-cell projects, 

and the teams have initiated collaborations for their respective codes to start 

sharing input/output data formats to promote interoperability and data sharing. 

 

                                                      
1 https://www.riken.jp/en/collab/resources/kcomputer/ 
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The second scientific problem targeted is personalized medicine. This field is 

currently growing extremely fast, although most of the tool development has 

previously not yet been focused on high-end parallel computers. For HANAMI, we 

have developed two use cases in particular needs of HPC resources due to their 

reliance on generative models to produce synthetic genomic data. In line with the 

EuroHPC focus on FAIR data policies, HANAMI will create reproducible pipelines 

operated by workflow managers and containerization technologies to ensure 

efficient HPC utilization. Second, we will leverage synthetic data generated from 

real cancer samples to personalise multiscale cellular simulations, creating digital 

counterparts of patient tissue organization at both molecular and cellular levels. As 

the data are synthetic, this excludes issues related to GDPR and sensitive data for 

the HANAMI project. Generative models will enable us to simulate thousands of 

potential tumorigenic trajectories and evaluate their effects on tumour growth from 

a cellular point of view, and we will particularly develop tools that enable more 

users in personalized medicine to move their utilization to the largest HPC 

resources in EU and Japan.  

 

Finally, the third part of the work package is targeting method development in 

fluid dynamics applied to biological systems in general, and flow of air or blood in 

organs in particular. This area is currently less developed in life science (in terms 

of scientific impact), but it has the advantage of using HPC algorithms that often 

scale exceptionally well. Here, our efforts are focused both on jointly developing 

codes to make them available to researchers and attempt to develop cases that 

showcase how fluid dynamics HPC approaches can be used for impact in 

biomedical science.   
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2 Project I: Exascale electrostatics & 

machine learning to enable molecular 

dynamics of cell-size systems 
Molecular dynamics (MD) simulations constitute an extremely powerful, but 

compute intensive, technique to investigate biomolecular systems in atomistic 

details. The method typically relies on using semi-empirical classical approximations 

for the potential function of interacting atoms and based on the force on each 

atom it is the possible to update the position of each atom a very short timestep 

later. For this to work, the integration time step must be in the order of 

femtoseconds, which means  

billions of timesteps are needed to reach biologically relevant time scales. Thus, 

parallel scaling is critical to reduce the time to solution. In theory this is a 

straightforward problem since interactions between atoms can be calculated 

independently, and many simulation codes (including GROMACS (Abraham et al., 

2015; Páll et al., 2020), developed within EuroHPC at KTH and collaborators) scale 

quite well. However, for practical applications, the need for billions of timesteps 

means users often target 1000-10,000 timesteps per second, which creates extreme 

demands on load balancing, low-latency communication, and algorithms with good 

scaling properties to thousands of nodes. 

 

The goal of the work in HANAMI is to enable practical classical molecular dynamics 

simulations for biomolecular and material science systems to target tens to 

hundreds of thousands of nodes in a single simulation without resorting to 

ensemble parallelism. The two current critical bottlenecks we have identified to 

make this possible is to (1) replace the traditional methods for long-range 

electrostatics due to their non-ideal scaling behaviour, and (2) enable simulations 

with hundreds of millions to billions of particles to make it possible to model 

whole-cell systems, in particular combined with machine-learning-based potentials 

to describe interactions beyond atomic level. 
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2.1 Task 5.1: Exascale Fast Multipole Methods 
Presently, the ultimate scaling in parallel simulations is usually limited by the need 

to calculate long-range electrostatics. This is traditionally performed by using the 

so-called “Particle Mesh Ewald” algorithm (Essmann et al., 1995), which in turn 

requires 3D Fast Fourier Transforms (3D FFT). Formally the computational aspect of 

this algorithm scales as O(N log N), where N is the number of atoms. However, the 

3D FFT algorithms involve a transpose operation of the global grid, and for parallel 

implementations this unfortunately leads to O(M2) communication messages, 

where M is the number of nodes (Figure 1). The bandwidth can be handled since 

the amount of data per message is reduced as the level of parallelism increases, 

but since each message must be sent/received and handled, the inherent latency 

limits scaling in all simulations that depend on PME. The goal of the biomolecular 

work in the HANAMI project is to resolve this. 

 

 
Figure 1. Illustration of a parallel implementation of the 3D Fast Fourier Transform, in particular the inherent grid 
transposition operations and the communication stages required. The number of messages sent increase as O(M2), where 
M is the number of nodes, which leads to unacceptable latencies in the limit of high-end parallelism. Reproduced from 
(Jagode, 2005). 

. 

Because of the parallelism limitation, the field has been investigating alternative 

solvers for electrostatics that provide better scaling properties. The most promising 

method is the Fast Multipole Method (FMM), which is widely used in N-body 

simulations. This method has O(N) arithmetic complexity and also O(N) 

computational complexity, which are the optimal scaling properties. But nearly all 
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available implementations have been optimized for the pure N-body problem, 

which means the memory limited regime, where molecular dynamics is in the 

latency limited regime. Thus, most codes require a complete rewrite, not to mention 

that existing implementations have had issues with energy conservation and 

absolute performance for specific-size problems when compared to traditional PME 

algorithms. 

 

We have a long-standing collaboration with Prof. Rio Yokota from Tokyo Tech 

Institute (also affiliated with R-CCS), the developer of ExaFMM (Wang et al., 2021) 

, which is one of the fastest FMM codes in the world. Five years ago, we solved a 

fundamental issue for the application of FMM to molecular simulation, namely that 

standard FMM does not produce a conservative potential and forces (Shamshirgar 

et al., 2019). 

Because there are discontinuities in the potential, very high accuracy was required 

in the FMM method to bring down the energy drift in MD simulations to an 

acceptable level. By instead applying a regularization, energy conservation can be 

guaranteed, and the accuracy requirements of the FMM method can be relaxed. 

This was a critical step to making FMM viable for use in MD simulations targeting 

e.g. biomolecular and material sciences systems (Figure 2, Figure 3). 

 

 

 

 
Figure 2. The challenge with discontinuities in potential/force between the short- and long-range regions for traditional 
FMM (red), and how the regularized FMM method developed by Yokota & Hess (Shamshirgar et al., 2019) solves this (blue). 
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Figure 3. The regularized ExaFMM implementation provides much lower energy drift relative to the kinetic energy, which is 
important to retain a conservative potential and sample a single free energy landscape. Note how the regularized FMM 
with p=4 terms in the expansion achieves the same accuracy as traditional FMM with p=6 terms. Both of these drifts are 
below the statistical threshold, while both lower-accuracy traditional FMM and direct summation lead to much larger 
errors. 

To make FMM usable in MD simulations in practice, significant work remains to be 

done. First, the ExaFMM code needs to be adapted for the atomistic molecular 

dynamics regime and regularization needs to be implemented in a production 

code. The group of Rio Yokota (Tokyo Tech Institute) is currently working on this, 

and as part of HANAMI the KTH team has hired Dr. Umair Sadiq as a new 

postdoctoral scholar, with additional assistance from Prof. Berk Hess (KTH).  

The plan is to have two implementations, on targeting CPUs and one targeting 

GPUs, thus covering all important HPC platforms in both the EU and Japan.  

Secondly, an interface (API) is required to transfer coordinates and charges from 

GROMACS to ExaFMM and to transfer the computed forces back.  

Validation tests are required on the coupled code to check the potential and the 

forces and, in particular, energy conservation.  

After that, performance test will be performed to study performance versus 

accuracy and to find the optimal parameter setup.  

We are using a range of reference molecular systems for the design, ranging from 

large water boxes to complete-cell systems with billions of particles. As GROMACS 

already supports Multiple-Program Multiple-Data (MPMD) parallelization for 

electrostatics for the standard electrostatic interaction methods, we will reuse 

MPMD here. This means that a subset of the MPI-ranks will be dedicated to 

performing the FMM calculation only. This reduces the number of ranks 
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participating in the FFM part as well as the MD part, thereby reducing the parallel 

overhead. Or, alternatively, the scaling limit is pushed out further. The setup will be 

transparent to the user of the API (FMM). The FMM code will simply receive an 

MPI communicator and a division of space and particles. This in turn will make it 

relatively straightforward to also port this implementation to the RIKEN-developed 

GENESIS (Kobayashi et al., 2017) molecular dynamics code once it is working. 

 

Finally, we will investigate the option of performing the direct pair-interactions of 

the FMM calculation the GROMACS non-bonded kernel. The ExaFMM code can 

compute both the direct particle-particle interactions and interactions involving 

multipoles. But as GROMACS already need to compute pair interactions for the 

Van der Waals interactions, computing the direct electrostatics interactions along 

with those is likely beneficial. With plain FMM this would be rather straightforward, 

the only complication is the MD and FMM code need to agree on which pair 

interactions should be computed. With the regularization, the pair interactions 

become much more complex and longer ranged. Their interaction pattern is 

rectangular, not spherical as for the Van der Waals interactions. In collaboration 

with the group of Prof. Rio Yokota, we will investigate strategies for computing the 

direct pair interaction in GROMACS. 

 

The current work division is that the Tokyo Tech Institute group is responsible for 

extending the present single-threaded implementation with strategies for kernel-

independent FMM implementations that can handle both regularized and non-

regularized versions in a common code, as well as supporting both periodic and 

non-periodic boundary conditions, while the KTH team is responsible for 

parallelization and creating the interface to GROMACS. The teams are jointly 

working on parallel scaling both in the library and GROMACS as well as 

benchmarking, with a target of having the initial internal versions working in 

GROMACS by project-month 12, a working version shared with external groups by 

project-month 18 that also supports multi-threading, and the supported release 

available in GROMACS release 2026. Based on the same library, the Sugita team at 

RIKEN R-CCS will support the library in the GENESIS code using the same API. 
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Benchmarks will be run on LUMI as well as HANAMI by project-month 30, where 

the EuroHPC/RIKEN teams currently have large allocations. 

 

2.2 Task 5.2: Targeting cellular-scale systems with machine-
learning methods 

Historically, biomolecular MD simulations have been limited to relatively small 

systems. One important reason for this is that smaller systems (meaning: fewer 

atoms) made each time step faster on scalar or low-parallelism hardware, and since 

biological processes depend on reaching sufficiently long timescales there has been 

a strong driving force to limit the system size. The other limitation is that as the 

size of a system grows, the timescales of most motion and dynamics grow even 

faster, so despite potentially beautiful illustrations, the impact of performing very 

short simulations for gigantic system can be argued to be limited. 

While these points still hold in general, the much-improved scaling and higher 

performance of modern MD codes means several groups want to use simulations 

to model highly complex systems involving multiple membranes, proteins, and 

dozens of other molecules to better understand interactions in biologically relevant 

surroundings. 

One particularly important area for large-scale models is the recent emergence of 

cryo-electron tomogram data collection for entire cells, starting with the minimal 

cell JCVI-Syn3A (Hutchison et al., 2016), where the Elizabeth Villa (UCSD) and Zan 

Luthey-Schulten (UIUC) groups used tomograms to generate lattice-based models 

including placement of nucleic acids and chromosomes (Gilbert et al., 2021). As 

part of our joint centre for Quantitative Cell Biology (QCB), Thornburg et al. recently 

published the first-ever complete model of a cell that could predict simple time-

dependent phenomena (Thornburg et al., 2022) (Figure 4, left). 

To be able to parametrize the lattice models from physical interactions and simulate 

molecular interactions such as binding and diffusion, we have used these lattice 

models prepared the first-ever coarse-grained simulations of entire cells (Figure 4, 

right).  

Presently there are numerous challenges with these simulations, including scaling 

limitations due to imperfect load balance and bottlenecks that have not been 

evident for smaller number of particles, including e.g. numerical issues when 
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summing interactions from millions of interaction pairs, or losses in accuracy when 

calculating differences in coordinates between atoms close to each other but far 

away from the origin – but we have been able to perform coarse-grained 

simulations up to 100 ns. 

For the second task in the HANAMI project, we are systematically addressing all 

these scaling limitations to enable simulations of arbitrary-size systems – tentatively 

only limited by 64-bit integer enumerations. We also need to solve remaining 

problems with extensive processing times when preparing or starting simulations 

since these processes have previously been single-threaded and performed on a 

single node, and the trajectory writing has to be parallelized to avoid a bottleneck 

when running on large number of nodes. Since these efforts are co-funded by 

Swedish national resources, we expect to have addressed all of them together with 

Dr. Sadiq (KTH) by project-month 18, which is also when the ExaFMM module will 

be ready. 

 

Finally, while it is possible to use both atomistic and coarse-grained classical force 

fields for these simulations, in materials science there is a strong emerging trend 

to rely more on knowledge-based neural network or AI force fields. In preliminary 

work we have added code to GROMACS to support forces provided e.g. by 

DeePMD-Kit (Zeng et al., 2023) and other external neural network force fields. In 

particular to target the whole-cell modelling, we need to extend this support to 

the regime of scaling to thousands of nodes, and ideally develop ways to combine 

knowledge-based potentials with physical interactions at long range, including e.g. 

the fast multipole methods of Task 5.1. Being able to perform whole-cell 

simulations using machine-learning force fields should also make it possible to 

train these force fields with either experimental data or lattice-model simulation 

results as the loss parameter, which would enable a new type of super-coarse-

grained force fields that might make it possible to reach even longer timescales 

than today’s coarse-grained force fields for large systems. We expect to support 

the first implementations of ML force fields in GROMACS internally by project-

month 18, in public releases by project-month 24, and publish applications to 

whole-cell-scale systems by the end of HANAMI, project-month 36. In addition to 

the efforts focused on improved parallelization, the GENESIS (Japanese side) and 
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GROMACS (European side) teams have also initiated collaborations to implement 

shared formats for input, output and trajectory formats – with additional links to 

the Amber (Case et al., 2005) and NAMD (Phillips et al., 2005) developers – with 

the goal of establishing new de-facto world-wide standards for describing, sharing 

and archiving molecular simulation data and metadata between codes. The Sugita 

R-CCS team is working together with the KTH team on defining the trajectories 

and data onthologies, with the aim of having the initial specifications ready by 

project-month 12, implementations in GROMACS as well as GENESIS by project-

month 24, and showing that the codes can exchange data and metadata by project-

month 36. 

 

 
Figure 4. Left: Lattice-resolution simple models of the JCVI-Syn3A minimal cell, based on tomography data. Reproduced 
from (Thornburg et al., 2022). Right: The first-ever coarse-grained particle model of the minimal cell, using the MARTINI 
force field in GROMACS, using 880 million coarse-grained particles.  

2.3 Conclusions  
The RIKEN R-CCS and HANAMI biomolecular collaborations have been established 

and are running smoothly with regular online meetings, and there is a promising 

roadmap of significantly increased interoperability and exchange of code between 

two packages with extensive usage and strong application publications. 

Prof. Erik Lindahl from KTH has already visited the Kobe laboratory of Prof. Yuji 

Sugita (RIKEN R-CCS biomolecular and AI4SCIENCE area co-director, PI of GENESIS) 

July 8-12, 2024, to initiate the collaborations. Dr. Sadiq (KTH) started his 

appointment in Stockholm summer 2024 and organizes roughly bi-weekly zoom 

meetings involving Prof. Rio Yokota (RIKEN & Tokyo Tech) as well as Prof. Berk 

Hess (KTH). Both Dr. Sadiq and Dr. Hess will visit Japan for the collaborations, 

currently targeting fall 2024 and spring 2025, respectively. Prof. Sugita visited 
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Europe quite recently and will be a recurring visitor with travel co-funded e.g. 

through CECAM conferences. 

Both KTH & RIKEN are currently running strategic initiatives on AI4SCIENCE 

involving e.g. the development of foundation models for biomolecular research, 

and the HANAMI teams is a collaborator and supporting partner on a recent 

application by Profs. Mohamed Wahib (RIKEN R-CCS) and Yuji Sugita to the JST 

ASPIRE2 call for “Foundational Computational Infrastructure for AI-driven Science”, 

similar to the RIKEN teams’ involvement in the HANAMI project. 

  

                                                      
2 https://www.jst.go.jp/aspire/en/program_e/announce_e/announce_aspire2024_e.html 
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3 Project II: Development of genome 

analysis pipelines for Personalized 

Medicine 
 

Personalized Medicine is becoming a reality rooted in the vast data availability and 

high computing needs. Among the many challenges in this area, we propose in 

this use case to address two of the more intense ones in terms of HPC demands 

and complexity.  

The first one is related to the use of generative models to produce synthetic 

genomic data. These models are gaining significant attention as they allow 

developers to efficiently benchmark their analysis tools without the ethical and 

legal restrictions associated with real genomic data, and at the same time can be 

used to explore biological scenarios that are not accessible to the real data. These 

models require intensive HPC resources to massively explore the space of potential 

genomic features and produce the corresponding sequencing data including 

classical artefacts found in real samples. The developments will be encapsulated in 

reproducible pipelines operated by workflow managers and containerization 

technologies, which ensure efficient utilization in HPC environments.  

In the second part of this use case, we will leverage the synthetic data generated 

from real cancer samples to personalise multiscale cellular simulations, creating 

digital counterparts of patient tissue organization at both molecular and cellular 

levels. Generative models will enable us to simulate thousands of potential 

tumorigenic trajectories and evaluate their effects on tumour growth from a cellular 

point of view.  Multiscale simulations represent one of the most promising 

approaches to implementing digital twins, where the use of parallel and distributed 

computing becomes essential. By simulating billions of cells, we will accurately 

model tumour masses and their surrounding microenvironment, thereby capturing 

the differential behaviour of different parts of the tumours in patient-specific 

characteristics with high fidelity. 
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3.1 Task 5.3: Genome analysis pipeline 
 

The computational challenges in personalised medicine have been amplified by the 

growing volume of sequencing data, also represented by the adoption of synthetic 

generative data models that allow developers to test their software while avoiding 

the special legal and ethical requirements of patient data. The importance of 

synthetic omics data generation lies in its ability to replicate the characteristics and 

patterns of real-world data without exposing confidential information. This is 

particularly relevant in the field of biology where the collection of data, such as 

clinical data containing sensitive patient information, is not straightforward 

(Selvarajoo and Maurer-Stroh, 2024). Synthetic data are generated using statistical 

methodologies or machine learning and are used for a wide range of applications, 

including as test data for new products and tools, and for model training and 

validation without compromising consumer privacy. It has also been shown to be 

less expensive, as it reduces the number and time taken for experiments and 

combines well with the real data to increase the overall number of observations. 

Likewise, its HPC needs are rooted in the algorithms used for the generation of 

synthetic genomes as well as the many genomes needed to realistically replicate a 

population of patients. 

 

In the context of the European Health Data Space (EHDS) and General Data 

Protection Regulation (GDPR), synthetic omics data generation becomes even more 

significant (Ahmed et al., 2024). The EHDS aims to empower individuals to take 

control of their health data and facilitate the exchange of data for the delivery of 

healthcare across the EU (Marcus et al., 2022). Synthetic omics data, by preserving 

data security while still allowing researchers, analysts, and decision-makers to gain 

valuable insights, aligns perfectly with the goals of the EHDS. 

 

One of the areas of biomedicine that has benefited most from synthetic data 

generation is cancer research. Based on sequencing data, there are several 

alterations that can be identified, such as single nucleotide variants, structural 

variants, copy number changes, etc. The methods that identify these alterations 

have different approaches that may make different calls. Developing and evaluating 
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these approaches requires datasets of sequencing data, which face two main issues: 

sensitivity of the data and availability of ground truth. Synthetic tumour sequencing 

data can address both issues. 

 

The BSC has implemented an approach that uses a sequencing read simulator, 

NEATGenReads (Stephens et al., 2016) to turn a specification of the ground truth 

into a dataset of sequencing reads. These simulators produce realistic reads by 

using a model trained on real data that can reflect sequencing errors, changes in 

coverage-based GC content, etc. The ground truth is specified as an evolutionary 

tree of clones, each having acquired a set of somatic mutations while inheriting the 

mutations of the parent. Additionally, a germline genotype is also specified. The 

pipeline turns this ground truth into one or more synthetic sequencing datasets by 

simulating reads from each clone separately and then mixing them according to 

specified clonal fractions. The simulation pipeline supports short variants (SNVs and 

Indels) as well as structural variants (SVs). Also, it keeps track of variant phasing in 

different chromosomes even through duplications and deletion events arising from 

SVs and produces realistic breakpoints and fusions in the DNA reads. It can also 

simulate tumour-in-normal and normal-in-tumour contamination at any specified 

level of purity. These simulations can be very costly computationally, the process 

has been parallelized so each chromosome copy is simulated in parallel for each 

clone, but they still can take hundreds of CPU hours per simulation. The underlying 

read simulator could be swapped with another or have its efficiency improved. 

 

Simulating the ground truth faithfully as DNA sequencing reads is relatively well 

solved. However, determining what is a realistic ground truth to simulate remains 

an open question that tracks our own understanding of the underlying biology. 

The complexity of the ground truth can range from small scenarios around a 

particular alteration e.g. a variant with low cellularity or a complex structural 

rearrangement, designed to test a very specific detection tool, to more 

comprehensive datasets that represent complete clonal evolution scenarios with 

several sequencing rounds following a simulated patient journey, and where clones 

present different mutational processes, respond differently to treatment or are able 

to establish metastases. There are different elements that build into that ground 
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truth, such as clonal structure, driver and passenger mutations, germline genotype, 

small variants, copy number changes and other structural variations, mutational 

signatures, mutations leading to genomic instability or resistance to treatment of 

metastatic potential, etc. Currently, we use data from knowledge bases and from 

real cohorts to source some of these elements, either by sampling randomly or by 

using generative approaches to model them from real data using AI. 

 

Within the entire process of generating synthetic tumour data, there are several 

places that are potentially interesting scientifically, especially in the generation of 

the ground truth: germline and somatic genotypes, clonal structure and drivers, 

mutational signatures, sourcing driver and passenger SVs, etc. Connecting DNA 

sequencing to RNA sequencing is a complicated task. Reflecting mutations in DNA 

into RNA may be straightforward, but determining how mutations in DNA affect 

RNA quantities, splice variants, or allele frequencies, is still largely an open problem. 

 

 
Figure 5. Computational pipeline representing tumour genome simulations and the subsequent primary analysis also 
compatible with real samples. 

Figure 5 illustrates the computational workflow designed to simulate synthetic 

tumour samples. The workflow starts by simulating both germline and somatic 

mutations from CSC and BSC in-house developed tools. Then, NEATGenReads is 

used to generate the corresponding fastq files to represent the sequencing 

protocol. It also includes a standard set of primary processing steps typically used 

to identify germline and somatic mutations in a tumour sample. In particular, it 

includes QC of reads with FastQC3, filtering low-quality reads with Samtools 

(Danecek et al., 2021), mapping of filtered reads against the human reference 

                                                      
3 http://www.bioinformatics.babraham.ac.uk/projects/fastqc  

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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genome with BWA (Li and Durbin, 2010) and variant calling with Mutect2 (Cibulskis 

et al., 2013). 

 

Although the mutations in the synthetic genomes are already known, this primary 

analysis is incorporated to replicate the same procedures usually applied to real 

tumour samples. This approach allows for the evaluation of how sequencing 

artefacts introduced by the read simulator and the primary analysis impact the 

pipeline's ability to detect existing mutations. From a computational perspective, 

the workflow can be parallelized to process thousands of synthetic genomes 

simultaneously. During a single processing run, the sequencing reads simulation, 

and the mapping steps are the most computationally intensive. These steps natively 

support parallel execution on all available CPU cores on a given compute node, 

ensuring maximum use of available computing resources for each execution.  

 

In this task, we will simulate a set of approximately 1,000 synthetic genomes 

using the methodologies described above, representing different mutational 

trajectories in a population of cancer patients. The generative model will be 

informed by the somatic mutations of the most prevalent solid cancers, such as 

breast cancer. In addition, the computational workflow will be adapted and 

extensively benchmarked both in European infrastructures (such as Marenostrum5 

and LUMI) and Supercomputer Fugaku. The evaluation will include standard metrics 

such as CPU time, memory consumption or I/O load, both at the general and 

building block level. In addition, specific metrics will be obtained to measure 

parallel and communication efficiency and computational scalability, as well as 

energy metrics collected to evaluate power consumption at each step. Finally, the 

generated synthetic genomes will then be used in the next task (Task 5.4) to 

generate multiscale simulations, thus creating digital twins of real patients. 

 

3.2 Task 5.4: Tumour evolution simulation pipelines 
Computational simulations are revolutionising biomedical research by enabling 

scientists to explore the dynamics of complex biological systems, thereby 

enhancing tasks such as large-scale screening of potential new drug compounds. 

In this context, simulations of cellular populations extend traditional mechanistic 
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models in systems biology by addressing crucial aspects of tissue organisation, 

such as cell-to-cell communication. These simulations are typically represented as 

multiscale systems, concurrently simulating various spatial and temporal scales to 

accurately predict real system responses in a highly optimised manner. Despite 

challenges related to parameterization and computational complexity, these 

techniques are proving invaluable for building patient-specific digital twins, 

enhancing our understanding of prevalent complex diseases such as cancer while 

paving the way for a new generation of computational medicine techniques. 

 

PhysiBoSS, a multiscale modelling framework, is used to create digital twins of 

tumours by simulating intracellular signalling and multicellular behaviour, which are 

key aspects of tumour growth and development (Ponce-de-Leon et al., 2023). By 

creating a digital twin, or a virtual replica, of a tumour, researchers can study its 

growth patterns, cellular interactions, and response to various treatments in a 

controlled, virtual environment. This approach allows for a more detailed 

understanding of the tumour's characteristics and which mechanics commit the 

cells to abnormal growth and invasion. 

 

We have lately been working on MPI (Message Passing Interface) and GPU 

(Graphics Processing Unit) methods that have the potential to significantly enhance 

the capabilities of PhysiBoSS. MPI is a standardised and portable message-passing 

system designed to function on a wide variety of parallel computing architectures. 

It can help in distributing the computational load across multiple machines, thereby 

speeding up the simulation process and enabling the simulation of real-sized 

tumours of billions of cells using hundreds of CPUs. GPUs, known for their high 

computational power, can also be leveraged to handle the complex calculations 

involved in tumour simulations. The use of GPUs can lead to a substantial reduction 

in computation time, making it feasible to run larger and more complex simulations. 

We are currently working on these expansions to integrate them into PhysiBoSS to 

enhance the scalability and efficiency of the simulation of digital twins of tumours. 

 

On the other hand, PROFILE is a tool designed to personalise patient-specific 

Boolean models using omics data (Béal et al., 2019). Boolean models are a type of 
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mathematical model used to represent biological systems, where each element 

(e.g., a gene or protein) can exist in one of two states (e.g., on or off). In the context 

of personalising intracellular models based on simulated genomes, PROFILE can be 

used to tailor these models to reflect the unique characteristics of a patient's 

cellular biology by integrating patient-specific omics data into the Boolean model 

variables. For instance, if the genomic data indicates a certain gene is mutated in 

a patient's cells, this information can be used to adjust the state of the 

corresponding element in the Boolean model. Similarly, transcriptomics data, which 

provides information about gene expression levels, can be used to further refine 

the model. By personalising the Boolean models in this way, PROFILE enables the 

creation of patient-specific intracellular models that reflect the biological 

characteristics of a patient's cells (Montagud et al., 2022). This can provide valuable 

insights into the cellular processes driving disease in individual patients and may 

ultimately guide the development of personalised treatment strategies. 

 

Tumour evolution simulation pipelines that include HPC-intensive synthetic 

genome generation, personalisation of Boolean models using PROFILE, and HPC-

intensive multiscale simulations using PhysiBoSS can face several computational 

bottlenecks. The first bottleneck can occur during the synthetic genome generation 

process. This process involves simulating the entire genome of a cell, which can be 

computationally intensive due to the large size and complexity of the human 

genome. Additionally, the generation of multiple synthetic genomes to represent 

the genetic heterogeneity within a tumour can further increase the computational 

load. The second potential bottleneck is that the multiscale simulations using 

PhysiBoSS can also pose a significant computational challenge. These simulations 

aim to model the behaviour of millions of cells over time, which requires substantial 

computational resources. Furthermore, the integration of intracellular models (from 

PROFILE) into the multicellular framework of PhysiBoSS adds another layer of 

complexity, potentially slowing down the simulation process. Therefore, efficient 

computational strategies and HPC resources are crucial for the successful 

implementation of such a comprehensive tumour evolution simulation pipeline. 
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Figure 6. Computational workflow describing sample-specific personalisation and the downstream multiscale cell-level 
simulations. 

Figure 6 illustrates the computational workflow designed to create digital twin 

representations both of synthetic and real patients. The workflow begins with 

processing molecular information from samples to generate a list of potential 

somatic alterations affecting molecular pathways. Simultaneously, selected 

pathways, modelled as Boolean networks, are analysed to identify potential protein 

candidates for drug interventions. Patient-specific customizations of these 

pathways are then prepared using PROFILE, followed by multiscale cellular 

simulations with PhysiBoSS. Finally, all patient-specific results are integrated to 

provide a comprehensive overview of the sample population. As with the previous 

section, the computational workflow will undergo extensive testing both at 

European facilities and on Supercomputer Fugaku, employing similar metrics. This 

evaluation is particularly significant for assessing the distributed computing 

capabilities of PhysiBoSS using MPI. It will provide insights into how effectively the 

MPI-enabled version of PhysiBoSS scales with increased simulation resources, such 

as a higher number of cells or substrates in the medium. 

CSC is focusing its efforts on Task 5.4 to enhance container support on HPC 

clusters, extending the reach of its solutions beyond Europe to organizations such 

as RIKEN (Fugaku) in Japan. The effort aims to improve container support by 

designing and prototyping a solution covering container building, provisioning, and 

software catalogues. The blueprint and prototype services will enable users to easily 

build custom containers targeting multiple architectures (LUMI, RIKEN, MN5) and 

provide the ability to publish software catalogues with optimized containers. These 
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containers are a key cornerstone for portable workflows, providing a common set 

of software.  

The developed container technologies will be documented and made accessible 

online (e.g., at docs.csc.fi) and will be transversal, meaning they will be applicable 

to all scientific workflows within the HANAMI use cases and beyond. The HANAMI 

project by CSC primarily focuses on HPC containers for scientific software 

developed by the Permedcoe.eu and Bioexcel.eu HPC Centres of Excellence. While 

computations in HANAMI use cases are not intended to process sensitive data, the 

design principles of any new solutions will incorporate data privacy and security 

compliance measures for the target HPC systems 

To achieve this objective, the HANAMI resources will be used to collaborate with 

consortia in the field of Personalized Medicine, including the European 1+ Million 

Genomes initiative, EOSC4Cancer, EOSC-Life, GDI, and EUCAIM, while leveraging 

standards such as GA4GH.org (e.g., TES Task Execution Service). 

The anticipated outcome is an overall blueprint for providing portable multi-

architecture software catalogues based on containers, and facilitate the support for 

automatic building and provisioning of containers, along with improved and 

comprehensive expert user documentation that will be openly available to facilitate 

global collaborations. 

 

3.3 Conclusions  
The described tasks on tumour simulations illustrate a use case of interest in 

personalised medicine, where the somatic alterations found in a particular patient 

constitute the starting point for designing a digital twin. In this context, the use of 

HPC becomes crucial since the computational requirements for processing tumour 

samples and their posterior cellular simulations require high-end HPC clusters. One 

of the objectives of these projects is benchmarking described use cases in different 

architectures in Europe and Japan to adapt the tools to the machines with the aim 

of providing inputs for the co-design of future computer architectures. 

Furthermore, the forthcoming availability of massive amounts of data in 

biomedicine will enable the modelling and simulation of tissue and organ dynamics 

with unprecedented precision. This surge in data will necessitate a substantial 

increase in computational resources, as well as the development of a new 
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generation of computational tools adapted to a more sophisticated computational 

environment, positioning HPC as a critical pillar for the future of biomedicine. 

4 Project III: Fluids 
This roadmap describes the collaborative work on software between the Simulation 

and Data Laboratory ‘Highly Scalable Fluids and Solids Engineering’ (SDL FSE) at 

the Jülich Supercomputing Centre (JSC), Foschungszentrum Jülich GmbH (FZJ), and 

the ‘Complex Phenomena Unified Simulation Reseach Team’ at RIKEN R-CCS to 

successfully realize Task 5.5 and Task 5.6 of the work package. It provides details 

about specific software features, use cases, and testing requirements that are 

identified to employ the software.  

 

4.1 Task 5.5: AI-assisted automated CFD pipelines and acceleration 
of CFD computations 

In this task, flow fields of numerical simulations will be initialized with a meaningful 

approximation coming from Physics-Aware Graph Convolutional Neural Networks 

(PA-GCNNs) that are jointly developed between JSC and RIKEN R-CCS. GCNNs in 

general are capable of predicting flow fields around irregularly shaped bodies using 

computational meshes that can easily be converted into graphs (Chen et al., 2021). 

With the physics-aware component, the governing equations of fluid mechanics 

are embedded into the loss function, which allows the prediction of flow fields 

solely based on geometric information of the computational domain. That is, the 

loss is computed based on boundary information and the residual of the governing 

equations, and no ground truth data from numerical simulations is required.  

 

In a first step until project month 18, a general GCNN is developed that reads 

information about boundary conditions and neighbouring nodes from 

computational meshes of the open-source multi-physics simulation framework m-

AIA (Lintermann et al., 2020) (formerly known as Zonal Flow Solver - ZFS). This 

GCNN is mainly developed by the Jülich side within the frame of the Joint 

Laboratory for Extreme-Scale Computing (JLESC) project ‘Deep Neural Networks for 
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CFD Simulations’4, which is an ongoing long-term collaboration between JSC and 

R-CCS. Bi-weekly meetings support an extensive exchange and joint developments. 

In a second step until project month 24, the physical loss is integrated into the 

GCNN. The integration of the physical loss is mainly done by the Japanese partners, 

who have already shown their expertise about physical loss functions in a recent 

joint publication about the choice of physical constraints when using physics-

informed neural networks for flow predictions (Puri et al., 2024). 

 

In the final step until project month 36, a flow initialization technique is tested for 

generic flow fields and nasal cavity flows. For the generic cases, three types of 

domains are investigated that are referred to as cases I-III. For each of these case, 

nine test flow domains are analysed not belonging to the training data of the PA-

GCNN. In case I, flow through randomly constricted variations of a 2D channel 

featuring a channel height of DI and a channel length of LI = 4 DI are analysed. An 

example configuration is shown in Fig. 1a. In case II, rectangular channels with a 

channel height of DII and a channel length of LII = 2 DII that incorporate a star-

shaped obstacle are investigated. This obstacle is generated by a random selection 

of a central point within the channel, around which a pre-defined number of 

vertices is randomly distributed. A corresponding example configuration is shown 

in Figure 7, panel b.  In case III, flow through constricted 90° L-bend pipes are 

analysed. The pipes are constructed to have the diameter of DIII and long straight 

sections of length LIII = 7 DIII joined by a 90° bend. The constrictions are placed at 

fixed points along the straight sections, up to two before and up to two after the 

bend. The constrictions are created by reducing the radius of the pipe by up to 

50%. An example configuration is illustrated in Figure 7, panel c. For the nasal cavity 

flows, the flow domains of the use case for Task 5.6 are used, which are described 

below. 

 

4.2 Task 5.6: AI-assisted surgery planning and risk assessment of 
exhaled aerosols 

This work will target surgery planning and waiting room scenarios analyzed by 

means of respiratory flow simulations. For the former a previously developed 

                                                      
4 https://jlesc.github.io/projects/dnn_cfd/ 
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Reinforcement Learning (RL) algorithm suggests modifications to the human airway 

to balance the objective functions of simultaneously minimizing the pressure loss 

and increasing the temperature between inflow and outflow regions (Rüttgers et 

al., 2024). After a modification, the algorithm receives feedback from m-AIA. To 

improve the predictive capabilities, the following two approaches are investigated 

until project month 18: (i) training of parallel environments are executed on multiple 

MPI ranks and the RL agents of each environment share their experience in a pre-

defined interval and (ii) for some of the geometry modifications the expensive 

numerical solver is replaced by predictions from a Gaussian Process Regression 

(GPR) model for an improved computational efficiency. The GPR model is 

developed by the Japanese partners and integrated into the workflow of the 

surgery planning tool. 

 
Figure 7. Computational domains for (a) 2D flows through a constricted channel (case I), (b) 2D flow around polygonial 
obstacles (case II), and (c) 3D flow through an L-bend with constrictions (case III). Each subfigure shows one example 
geometry for the corresponding case. 
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Figure 8.  The nasal cavity of two patients, the first suffering from a deviated septum (A) accompanied by a bony spur (B), 
and the second from enlarged middle (C) and inferior (D) turbinates. The close-ups on cross-sectional areas illustrate the 
pre-surgical state (black), and planned interventions (red). They are juxtaposed to the corresponding pre-surgical CT 
images. The RL algorithm finds the optimal geometry modification between the black and the red states. Note that these 
are only representative cross-sectional areas. The RL agent modifies 3D regions.   

Anonymized Computer Tomography (CT) data of two patients are used, see Figure 

8. 2. The first patient suffers from a deviated septum (location A) and a bony spur 

(location B), and the second patient from enlarged turbinates (locations C and D). 

The patients gave informed consent for inclusion of their data. The CT data of the 

first patient are composed of 119 axial slices with 512 x 512 pixels each. The pixel 

spacing is 0.5 mm, and the space between the axial slices is 0.7 mm. The CT 

recordings of the second patient have 103 axial slices, again with 512 x 512 pixels 

each. The pixel spacing is 0.326 mm, and the space between the axial slices is 1.0 

mm. The 3D model of the pre-surgical upper airway is extracted from the Digital 

Imaging and Communications in Medicine (DICOM) files of the CT data with the 

pipeline described in (Rüttgers et al., 2022). For the first patient, surgery planning 

of a septoplasty is investigated, and for the second patient, the surgical potential 

of a turbinectomy is analysed. More details about the medical data, types of 

surgeries, and motivation from a medical background are given in (Rüttgers et al., 

2024; Waldmann et al., 2022). 

 

With an improved computational efficiency, the action space can be increased, and 

more data can be transferred between m-AIA and the RL algorithm. However, 

currently, the coupling is realized by overwriting and reading a Boolean-array, 

which informs m-AIA or the RL about the action to perform next, i.e., a simulation 
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of learning step. To allow for a more efficient data transfer between the two 

instances, an improved coupling with an MPI-based library, e.g, the Physics Deep 

Learning Coupler (PhyDLL)5, at the interface is implemented until project month 24 

by the Jülich side.  

 

Finally, it is investigated whether m-AIA can be replaced in three steps by a 

variation of the GCNN mentioned in T.5.5, which is jointly developed with the 

Japanese partners from RIKEN R-CCS until project month 36: 

 

 In the first step, a pre-defined number of flow fields for varying geometries 

is computed by m-AIA 

 In the second step, the flow fields of these configurations are used as 

training data for the GCNN which is trained to predict the flow fields of 

varying geometries for the same patient.  

 In the third step, the trained GCNN is coupled to the parallel RL algorithm 

to determine the optimized shape. 

 

This approach allows to consider a much larger number of geometry modifications, 

and, therefore, leading to an increased action space. The goal is to train agents in 

modifying the CT data directly to explore geometry variations that go beyond the 

action space which is pre-defined by a surgeon. The flow simulations conducted 

for surgery planning currently require days, even if the number of simulations are 

reduced by the first step. Therefore, an important factor of the practicability of the 

proposed method in daily clinical environments is the access to Exascale HPC 

resources to reduce the computation time to hours rather than days. 

 

The waiting room scenarios evaluate exposure to airborne pollutants, which is a 

major environmental health challenge, especially in a society that spends most of 

the day indoors. In the built environment, ventilation systems are essential to 

maintain air quality, but their performance is highly influenced by multiple factors, 

such as temperature, wind speed, or endogenous human emissions through 

                                                      
5 https://phydll.readthedocs.io/en/latest/ 
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respiratory events. Numerical flow simulations conducted by the Japanese partners 

are used to predict indoor flow and the distribution of pollutants. Specifically, 

Large-Eddy Simulation (LES), which precisely predicts particle tracking from the 

larger to the smallest scales of turbulence (Murga et al., 2023), are used. To model 

the complex interactions between the human envelope through its physiological 

functions and local indoor flow produced by the ventilation system, HPC is essential 

in terms of data analysis, processing, and speed. 
Figure 9. Use case for the analysis of waiting room scenarios. (a) Target room design, (b) Example of simplified room for 
optimization, (c) Position of inlets "air support port" (orange) and outlets "exhaust port" (blue). 

 

This subtask evaluates the performance of various ventilation systems in the built 

environment by minimizing transmission of airborne particles measured through 

the deposition on human tissue, aided by two different types of complex virtual 

manikins: source-occupants and a receptor-occupants (until project month 24). 

Thereafter, the layout and size of the supply-exhaust vents and ventilation flow rate 

of the most advantageous system are optimized through a genetic algorithm that 

also considers energy consumption until project month 36.  

 

A specific use case is shown in Figure 9 for two mannequins. The target room has 

dimensions of 6 × 6 × 3 meters and the ventilation rate correspond to the outdoor 

air requirement of 10 L/s per person. Outside, the room target as well as supply 

air temperature are set to 33 °C, 25 °C, and 20 °C, respectively. Two types of widely 

used ventilation systems are considered: 1) mixing ventilation, where the air is 

supplied-exhausted at ceiling level to form a well-mixed environment; and 2) 
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displacement ventilation, where the air is supplied at a low height and exhausted 

at ceiling level, creating a stratified distribution to carry pollutants above occupant-

level. Building design and exemplified flow direction are shown in Figure 9, panel 

a. The two complex virtual mannequins are standing face-to-face in the middle of 

the room, separated by a distance of 1 meter. The source-occupant is constantly 

talking based on a 1-to-10 enumeration model, scaled 50% to simulate “loud” 

speaking (Gupta et al., 2010). Particles are released from its mouth at peak velocities 

during speech. The receptor-occupant has an integrated respiratory tract, attached 

to the body by the nares’ surface until the 7th generation of bronchial tubes. A 

continuous breathing cycle based on a sinusoidal function is applied at the nasal 

openings and at the end of each bronchus. The main objective is to enhance the 

built environment by integrating human-built flow envelopes. 

 

The testing requirements for the JSC and RIKEN R-CCS machines (Supercomputer 

Fugaku) are taken from successfully approved compute time proposals. On the 

Jülich side, e.g., for the project "Improved Diagnostics of Respiratory Flows Using 

a Lattice-Boltzmann Method and Machine Learning Techniques" and the granting 

period from 1 May 2024 to 30 April 2025 the following resources have been 

granted: 

 

 JURECA DC Module CPU: 1.76 million core-h 

 JURECA DC Module GPU: 2.60 million core-h 

 FUGAKU CPU: 1.5 million core-h  

 

After the end of the granting period, this project will be extended for the activities 

in HANAMI. 

 

4.3 Conclusions  
The described tasks build the foundation for a better understanding of respiratory 

diseases. This includes the understanding of nasal obstructions inside of the nasal 

cavity, but also infections risks in indoor scenarios that stem from expiration. 

Numerical simulations allow detailed analysis of flow fields, supported by machine 

learning techniques that help to accelerate processes or find optimal solutions 



           D5.1 Biomedical project setup roadmap 
 

35 
 

 

more efficient. In this context, the use of HPC becomes crucial since the 

computational requirements for highly resolved simulations and deep neural 

networks require high-end HPC clusters. 

5 Long-term impact assessment 
For each project area, we will track both the technical, infrastructure, and scientific 

impact of the work, with the three categories respectively characterized by (1) 

algorithmic and computer science publication advances, (2) benchmarks showing 

the progress compared to pre-HANAMI versions as well as the number of groups 

outside HANAMI using the improvements, and (3) joint publications between 

HANAMI/RIKEN teams on scientific applications as well as impact on the respective 

national computational/scientific roadmaps. 
We will also specifically promote initiation of new collaborations targeting e.g. post-

HANAMI development of new joint foundation models and similar generative AI 

methods that can be applied to the biomolecular scientific area. 
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